Страница:
<< 1 2
3 >> [Всего задач: 14]
Задача
98130
(#М1348)
|
|
Сложность: 4+ Классы: 8,9
|
Точка P лежит на описанной окружности треугольника ABC. Построим треугольник A1B1C1, стороны которого параллельны отрезкам PA, PB, PC
(B1C1 || PA, C1A1 || PB, A1B1 || PC). Через точки A1, B1, C1 проведены прямые, параллельные соответственно BC, CA и AB. Докажите, что эти прямые пересекаются в точке, лежащей на описанной окружности треугольника A1B1C1.
Задача
98132
(#М1349)
|
|
Сложность: 4+ Классы: 7,8,9
|
Круг разбит на n секторов, в некоторых секторах стоят фишки – всего фишек n + 1. Затем позиция подвергается преобразованиям. Один шаг преобразования состоит в следующем: берутся какие-нибудь две фишки, стоящие в одном секторе, и переставляются в разные стороны в соседние секторы.
Докажите, что через некоторое число шагов не менее половины секторов будет
занято.
Задача
98142
(#М1350)
|
|
Сложность: 4+ Классы: 8,9,10
|
Пусть n и b – натуральные числа. Через V(n, b) обозначим число разложений n на сомножители, каждый из которых больше b (например:
36 = 6·6 = 4·9 = 3·3·4 = 3·12, так что V(36, 2) = 5). Докажите, что V(n, b) < n/b.
Задача
98128
(#М1351)
|
|
Сложность: 4- Классы: 8,9
|
Пусть в прямоугольном треугольнике AB и AC – катеты, AC > AB. На AC выбрана точка E, а на BC – точка D так, что AB = AE = BD.
Докажите, что треугольник ADE прямоугольный тогда и только тогда, когда стороны треугольника ABC относятся как 3 : 4 : 5.
Задача
98127
(#М1352)
|
|
Сложность: 3- Классы: 7,8,9
|
n чисел (n > 1) называются близкими, если каждое из них меньше чем сумма всех чисел, делённая на n – 1. Пусть a, b, c, ... – n близких чисел, S – их сумма. Докажите, что
а) все они положительны;
б) a + b > c;
в) a + b > S/n–1.
Страница:
<< 1 2
3 >> [Всего задач: 14]