Страница: 1
2 3 4 5 6 >> [Всего задач: 27]
Задача
98271
(#М1531)
|
|
Сложность: 3+ Классы: 6,7,8
|
На плоскости расположен квадрат и невидимыми чернилами нанесена точка P. Человек в специальных очках видит точку. Если провести прямую, то он отвечает на вопрос, по какую сторону от неё лежит P (если P лежит на прямой, то он говорит, что P лежит на прямой).
Какое наименьшее число таких вопросов необходимо задать, чтобы узнать, лежит ли точка P внутри квадрата?
Задача
98281
(#М1532)
|
|
Сложность: 4- Классы: 10,11
|
Существуют ли такие
а) 4 различных натуральных числа;
б) 5 различных натуральных чисел;
в) 5 различных целых чисел;
г) 6 различных целых чисел,
что сумма каждых трёх из них – простое число?
Задача
98284
(#М1533)
|
|
Сложность: 3+ Классы: 10,11
|
На плоскости даны три точки A, B, C. Через точку C проведите прямую так, чтобы произведение расстояний от этой прямой до A и B было максимальным. Всегда ли такая прямая единственна?
Задача
98279
(#М1536)
|
|
Сложность: 4 Классы: 8,9
|
а) Существуют ли два равных семиугольника, все вершины которых совпадают, но никакие стороны не совпадают?
б) А три таких семиугольника?
Задача
98286
(#М1537)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дано n чисел, p – их произведение. Разность между p и каждым из этих чисел – нечётное число. Докажите, что все данные n чисел иррациональны.
Страница: 1
2 3 4 5 6 >> [Всего задач: 27]