Страница: 1
2 >> [Всего задач: 7]
|
|
Сложность: 3+ Классы: 7,8,9,10
|
В некоторой стране суммарная зарплата 10% самых высокооплачиваемых работников составляет 90% зарплаты всех работников. Может ли так быть, что в каждом из регионов, на которые делится эта страна, зарплата любых 10% работников составляет не более 11% всей зарплаты, выплачиваемой в этом регионе?
|
|
Сложность: 3+ Классы: 7,8,9
|
Камни лежат в трёх кучках: в одной – 51 камень, в другой – 49, а в третьей – 5. Разрешается объединять любые кучки в одну, а также разделять кучку из чётного количества камней на две равные. Можно ли получить 105 кучек по одному камню в каждой?
|
|
Сложность: 3+ Классы: 8,9,10
|
Внутри угла с вершиной M отмечена точка A. Из этой точки выпустили шар, который отразился от одной стороны угла в точке B, затем от другой стороны в точке C и вернулся в A ("угол падения" равен "углу отражения", см. рис.). Докажите, что центр O описанной окружности треугольника BCM лежит на прямой AM. (Шар считайте точкой.)
Задача
98521
(#4)
|
|
Сложность: 4- Классы: 8,9
|
На доске нарисовали выпуклый многоугольник. В нём провели несколько
диагоналей, не пересекающихся внутри него, так что он оказался разбит на
треугольники. Затем возле каждой вершины записали число треугольников,
примыкающих к этой вершине, после чего все диагонали стерли. Можно ли по
оставшимся возле вершин числам восстановить стёртые диагонали?
Задача
98522
(#5)
|
|
Сложность: 4 Классы: 8,9
|
а) На две клетки шахматной доски выставляются чёрная и белая фишки. Разрешается по очереди передвигать их, каждым ходом сдвигая очередную фишку на любое свободное соседнее поле по вертикали или горизонтали. Могут ли на доске в результате таких ходов встретиться все возможные позиции расположения этих двух фишек, причём ровно по одному разу?
б) А если разрешается сдвигать фишки в любом порядке (не обязательно по очереди)?
Страница: 1
2 >> [Всего задач: 7]