ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 93 94 95 96 97 98 99 >> [Всего задач: 1255]      



Задача 60762  (#04.136)

Темы:   [ Арифметика остатков (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4-
Классы: 9,10,11

Пусть числа x1, x2, ..., xr образуют приведённую систему вычетов по модулю m.
Для каких a и b числа  yj = axj + b  (j = 1, ..., r)  также образуют приведённую систему вычетов по модулю m?

Прислать комментарий     Решение

Задача 60763  (#04.137)

Темы:   [ Арифметика остатков (прочее) ]
[ Функция Эйлера ]
Сложность: 3+
Классы: 9,10,11

Пусть  (m, n) = 1,  а числа x и y пробегают приведённые системы вычетов по модулям m и n соответственно. Докажите, что число  A = xn + ym  пробегает при этом приведённую систему вычетов по модулю mn. Выведите отсюда мультипликативность функции Эйлера (см. задачу 60760).

Прислать комментарий     Решение

Задача 60764  (#04.138)

Темы:   [ Функция Эйлера ]
[ Формула включения-исключения ]
Сложность: 4
Классы: 9,10,11

Пусть    Докажите равенство   φ(n) = n(1 – 1/p1)...(1 – 1/ps).
  а) пользуясь мультипликативностью функции Эйлера;
  б) пользуясь формулой включения-исключения.
Определение функции Эйлера φ(n) см. в задаче 60758.

Прислать комментарий     Решение

Задача 60765  (#04.139)

Темы:   [ Функция Эйлера ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 9,10,11

Решите уравнения   а)  φ(x) = 2;   б)  φ(x) = 8;   в)  φ(x) = 12;   г)  φ(x) = 14.

Прислать комментарий     Решение

Задача 60766  (#04.140)

Темы:   [ Арифметика остатков (прочее) ]
[ Функция Эйлера ]
Сложность: 3+
Классы: 9,10,11

По какому модулю числа 1 и 5 составляют приведённую систему вычетов?

Прислать комментарий     Решение

Страница: << 93 94 95 96 97 98 99 >> [Всего задач: 1255]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .