ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 97 98 99 100 101 102 103 >> [Всего задач: 1255]      



Задача 60782  (#04.156)

Тема:   [ Теорема Эйлера ]
Сложность: 3+
Классы: 9,10,11

При помощи теоремы Эйлера найдите число x, удовлетворяющее сравнению  ax + b ≡ 0 (mod m),  где  (a, m) = 1.

Прислать комментарий     Решение

Задача 60783  (#04.157)

Темы:   [ Малая теорема Ферма ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 10,11

Докажите, что при любом целом a
  a)  a5a  делится на 30;
  б)  a17a  делится на 510;
  в)  a11a  делится на 66;
  г)  a73a  делится на 2·3·5·7·13·19·37·73.

Прислать комментарий     Решение

Задача 73597  (#04.158)

Темы:   [ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
[ Теорема Эйлера ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Докажите, что для любого нечётного натурального числа a существует такое натуральное число b, что  2b – 1  делится на a.

Прислать комментарий     Решение

Задача 60785  (#04.159)

Темы:   [ Теорема Эйлера ]
[ Произведения и факториалы ]
Сложность: 4-
Классы: 9,10,11

Докажите, что при любом нечётном n число  2n! – 1  делится на n.

Прислать комментарий     Решение

Задача 60786  (#04.160)

 [Числа Кармайкла]
Тема:   [ Малая теорема Ферма ]
Сложность: 3+
Классы: 9,10,11

Докажите, что для составного числа 561 справедлив аналог малой теоремы Ферма: если  (a, 561) = 1,  то  a560 ≡ 1 (mod 561).

Прислать комментарий     Решение

Страница: << 97 98 99 100 101 102 103 >> [Всего задач: 1255]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .