Страница:
<< 49 50 51 52
53 54 55 >> [Всего задач: 363]
|
|
Сложность: 3+ Классы: 7,8,9,10
|
По кругу записаны семь натуральных чисел. Известно, что в каждой паре соседних чисел одно делится на другое.
Докажите, что найдётся пара и не соседних чисел с таким же свойством.
|
|
Сложность: 3+ Классы: 8,9,10
|
Число 1/42 разложили в бесконечную десятичную дробь. Затем вычеркнули 1997-ю цифру после запятой, а все цифры, стоящие справа от вычеркнутой цифры, сдвинули на 1 влево. Какое число больше: новое или первоначальное?
|
|
Сложность: 3+ Классы: 8,9,10
|
Куб со стороной 10 разбит на 1000 кубиков с ребром 1. В каждом кубике записано число, при этом сумма чисел в каждом столбике из 10 кубиков (в любом из трёх направлений) равна 0. В одном из кубиков (обозначим его через A) записана единица. Через кубик A проходит три слоя, параллельных граням куба (толщина каждого слоя равна 1). Найдите сумму всех чисел в кубиках, не лежащих в этих слоях.
|
|
Сложность: 3+ Классы: 9,10,11
|
Шестью одинаковыми параллелограммами площади 1 оклеили кубик с ребром 1. Можно ли утверждать, что все параллелограммы — квадраты? Можно ли утверждать, что все они — прямоугольники?
|
|
Сложность: 3+ Классы: 8,9,10
|
Таблица имеет форму квадрата со стороной длины n. В первой строчке таблицы стоит одно число – 1. Во второй – два числа – две двойки, в третьей – три четвёрки, и т.д.:
(здесь нарисован квадрат 4×4). В каждой следующей строчке стоит следующая степень двойки. Длина строчек сначала растёт, а затем убывает так, чтобы получился квадрат. Докажите, что сумма всех чисел таблицы есть квадрат некоторого целого числа.
Страница:
<< 49 50 51 52
53 54 55 >> [Всего задач: 363]