ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 363]      



Задача 64191

Темы:   [ Раскраски ]
[ Принцип крайнего ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9

На острове все страны треугольной формы (границы прямые). Если две страны граничат, то по целой стороне. Докажите, что страны можно раскрасить в 3 цвета так, что соседние по стороне страны будут покрашены в разные цвета.
Прислать комментарий     Решение


Задача 64192

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Инварианты ]
Сложность: 4
Классы: 8,9,10

На доске было написано уравнение вида  x² + px + q = 0  с целыми ненулевыми коэффициентами p и q. Временами к доске подходили разные школьники, стирали уравнение, после чего составляли и записывали уравнение такого же вида, корнями которого являются коэффициенты стёртого уравнения. В какой-то момент составленное уравнение совпало с тем, что было написано на доске изначально. Какое уравнение изначально было написано на доске?

Прислать комментарий     Решение

Задача 64194

Тема:   [ Наглядная геометрия в пространстве ]
Сложность: 4
Классы: 10,11

Существует ли многогранник, все грани которого — равнобедренные прямоугольные треугольники?
Прислать комментарий     Решение


Задача 66767

Темы:   [ Внутренность и внешность. Лемма Жордана ]
[ Четность и нечетность ]
Сложность: 4
Классы: 10,11

В игре Тантрикс-солитер возможны фишки 14 типов:

Каждую из них можно поворачивать, но нельзя переворачивать: именно поэтому первые 2 фишки разные – их нельзя получить друг из друга поворотом. Их разрешается прикладывать друг к другу так, чтобы линии одного цвета были продолжениями друг друга. У Саши было по одной фишке каждого типа, и он мог выложить их так, чтобы все синие линии образовывали «петлю», и при этом чтобы в картинке не было «дырок»:

Саша потерял фишку . Докажите, что теперь он не сможет выложить оставшиеся 13 фишек так, чтобы в картинке не было «дырок», а все синие линии образовывали петлю.

Прислать комментарий     Решение

Задача 66768

Темы:   [ Cфера, вписанная в призму ]
[ Вычисление объемов ]
Сложность: 4
Классы: 10,11

Сфера единичного радиуса касается всех ребер некоторой треугольной призмы. Чему может быть равен объем этой призмы? Ответ округлите до сотых.
Прислать комментарий     Решение


Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 363]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .