Страница:
<< 64 65 66 67
68 69 70 >> [Всего задач: 363]
На острове все страны треугольной формы (границы прямые). Если две страны граничат, то по целой стороне. Докажите, что страны можно раскрасить в 3 цвета так, что соседние по стороне страны будут покрашены в разные цвета.
|
|
Сложность: 4 Классы: 8,9,10
|
На доске было написано уравнение вида x² + px + q = 0 с целыми ненулевыми коэффициентами p и q. Временами к доске подходили разные школьники, стирали уравнение, после чего составляли и записывали уравнение такого же вида, корнями которого являются коэффициенты стёртого уравнения. В какой-то момент составленное уравнение совпало с тем, что было написано на доске изначально. Какое уравнение изначально было написано на доске?
|
|
Сложность: 4 Классы: 10,11
|
Существует ли многогранник, все грани которого — равнобедренные прямоугольные треугольники?
|
|
Сложность: 4 Классы: 10,11
|
В игре Тантрикс-солитер возможны фишки 14 типов:
![](show_document.php?id=1722412)
Каждую из них можно поворачивать, но нельзя переворачивать: именно поэтому первые 2 фишки разные – их нельзя получить друг из друга поворотом. Их разрешается прикладывать друг к другу так, чтобы линии одного цвета были продолжениями друг друга. У Саши было по одной фишке каждого типа, и он мог выложить их так, чтобы все синие линии образовывали «петлю», и при этом чтобы в картинке не было «дырок»:
![](show_document.php?id=1722413)
Саша потерял фишку
. Докажите, что теперь он не сможет выложить оставшиеся 13 фишек так, чтобы в картинке не было «дырок», а все синие линии образовывали петлю.
|
|
Сложность: 4 Классы: 10,11
|
Сфера единичного радиуса касается всех ребер некоторой треугольной призмы. Чему может быть равен объем этой призмы? Ответ округлите до сотых.
Страница:
<< 64 65 66 67
68 69 70 >> [Всего задач: 363]