Страница:
<< 67 68 69 70
71 72 73 >> [Всего задач: 363]
|
|
Сложность: 4 Классы: 7,8,9
|
Отмечены четыре вершины квадрата. Отметьте ещё четыре точки так, чтобы на всех серединных перпендикулярах к отрезкам с концами
в отмеченных точках лежало по две отмеченные точки.
Вершины правильного треугольника расположены на сторонах AB, CD и EF правильного шестиугольника ABCDEF.
Докажите, что эти треугольник и шестиугольник имеют общий центр.
|
|
Сложность: 4 Классы: 9,10,11
|
Маленький Петя подпилил все ножки у квадратной табуретки и четыре отпиленных
кусочка потерял. Оказалось, что длины всех кусочков различны, и что табуретка
после этого стоит на полу, пусть наклонно, но по-прежнему касаясь пола всеми
четырьмя концами ножек. Дедушка решил починить табуретку, однако нашёл только
три кусочка с длинами 8, 9 и 10 см. Какой длины может быть четвёртый кусочек?
|
|
Сложность: 4 Классы: 7,8,9
|
На окружной железной дороге n станций. Иногда дежурные по станциям связываются друг с другом по радио. В каждый момент времени сеанс связи ведут только два человека. За сутки между каждыми двумя станциями произошёл ровно один радиосеанс. Для каждой станции (если учесть только её сеансы) оказалось, что она общалась с другими станциями по очереди в порядке их расположения на железной дороге (по или против часовой стрелки, у разных станций эти направления могут быть разными), начиная с одной из соседних и заканчивая другой. Чему может равняться n?
|
|
Сложность: 4 Классы: 9,10,11
|
На рисунке изображена фигура
ABCD .
Стороны
AB ,
CD и
AD этой фигуры– отрезки
(причём
AB||CD и
AD
CD );
BC – дуга окружности,
причём любая касательная к этой дуге отсекает от фигуры трапецию
или прямоугольник. Объясните, как провести касательную к дуге
BC ,
чтобы отсекаемая фигура имела наибольшую площадь.
Страница:
<< 67 68 69 70
71 72 73 >> [Всего задач: 363]