ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 363]      



Задача 67138

Темы:   [ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 4
Классы: 7,8,9,10,11

Казино предлагает игру по таким правилам. Игрок ставит любое целое число долларов (но не больше, чем у него в этот момент есть) либо на орла, либо на решку. Затем подбрасывается монета. Если игрок угадал, как она упадёт, он получает назад свою ставку и столько же денег впридачу. Если не угадал — его ставку забирает казино. Если игроку не повезёт четыре раза подряд, казино присуждает ему в следующей игре утешительную победу вне зависимости от того, как упадёт монета. Джо пришёл в казино со 100 долларами. Он обязался сделать ровно пять ставок и ни разу не ставить больше 17 долларов. Какую наибольшую сумму денег он сможет гарантированно унести из казино после такой игры?
Прислать комментарий     Решение


Задача 67139

Темы:   [ Подсчет двумя способами ]
[ Средние величины ]
Сложность: 4
Классы: 8,9,10,11

Коттеджный посёлок имеет размеры 𝑛 × 𝑚 одинаковых квадратных участков. Собственники по очереди начали огораживать свои участки забором. Стоимость части забора между любыми двумя соседними участками составила 10 тысяч рублей и её полностью нёс тот сосед, который огораживал свой участок первым (расходы не делились между соседями, то есть некоторые могли вообще ничего не потратить). В итоге все участки оказались огорожены забором с четырёх сторон. Могло ли оказаться, что в итоге поровну жителей потратило на забор по 0, 10, 30 и 40 тысяч рублей, а остальные — по 20 тысяч?
Прислать комментарий     Решение


Задача 67140

Темы:   [ Квадратный трехчлен (прочее) ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 4
Классы: 9,10,11

Таня взяла список из ста чисел 1, 2, 3, . . . , 100 и вычеркнула несколько из них. Оказалось, что какие бы два числа из оставшихся Таня ни взяла в качестве $a$ и $b$, уравнение $x^2 + ax + b=0$ имеет хотя бы один действительный корень. Какое наибольшее количество чисел могло остаться не вычеркнутым?
Прислать комментарий     Решение


Задача 67141

Темы:   [ Конус (прочее) ]
[ Площадь сечения ]
[ Площадь треугольника (прочее) ]
[ Экстремальные свойства треугольника (прочее) ]
Сложность: 4
Классы: 10,11

Автор: Фольклор

У прямого кругового конуса длина образующей равна 5, а диаметр равен 8.

Найдите наибольшую площадь треугольного сечения, которая может получиться при пересечении конуса плоскостью.
Прислать комментарий     Решение


Задача 67275

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 9,10,11

Рассмотрим различные прямоугольники периметра 10, лежащие внутри квадрата со стороной 10. Чему равна наибольшая возможная площадь закрашенной звёздочки (см. рисунок)? Ответ округлите до двух знаков после запятой.

Прислать комментарий     Решение

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 363]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .