Страница:
<< 65 66 67 68
69 70 71 >> [Всего задач: 363]
|
|
Сложность: 4 Классы: 7,8,9,10,11
|
Казино предлагает игру по таким правилам. Игрок ставит любое целое
число долларов (но не больше, чем у него в этот момент есть) либо на орла, либо на
решку. Затем подбрасывается монета. Если игрок угадал, как она упадёт, он получает
назад свою ставку и столько же денег впридачу. Если не угадал — его ставку забирает
казино. Если игроку не повезёт четыре раза подряд, казино присуждает ему в следующей
игре утешительную победу вне зависимости от того, как упадёт монета. Джо пришёл в
казино со 100 долларами. Он обязался сделать ровно пять ставок и ни разу не ставить
больше 17 долларов. Какую наибольшую сумму денег он сможет гарантированно унести
из казино после такой игры?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Коттеджный посёлок имеет размеры 𝑛 × 𝑚 одинаковых квадратных
участков. Собственники по очереди начали огораживать свои участки забором. Стоимость части забора между любыми двумя соседними участками составила 10 тысяч рублей и её полностью нёс тот сосед, который огораживал свой участок первым (расходы не делились между соседями, то есть некоторые могли вообще ничего не потратить). В
итоге все участки оказались огорожены забором с четырёх сторон. Могло ли оказаться, что в итоге поровну жителей потратило на забор по 0, 10, 30 и 40 тысяч рублей, а
остальные — по 20 тысяч?
|
|
Сложность: 4 Классы: 9,10,11
|
Таня взяла список из ста чисел 1, 2, 3, . . . , 100 и вычеркнула несколько
из них. Оказалось, что какие бы два числа из оставшихся Таня ни взяла в качестве $a$ и $b$, уравнение $x^2 + ax + b=0$ имеет хотя бы один действительный корень. Какое наибольшее количество чисел могло остаться не вычеркнутым?
|
|
Сложность: 4 Классы: 10,11
|
У прямого кругового конуса длина образующей равна 5, а диаметр
равен 8.
Найдите наибольшую площадь треугольного сечения, которая может получиться при
пересечении конуса плоскостью.
|
|
Сложность: 4 Классы: 9,10,11
|
Рассмотрим различные прямоугольники периметра 10, лежащие внутри квадрата со стороной 10. Чему равна наибольшая возможная площадь закрашенной звёздочки (см. рисунок)? Ответ округлите до двух знаков после запятой.
![](show_document.php?id=1724318)
Страница:
<< 65 66 67 68
69 70 71 >> [Всего задач: 363]