ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выпуски:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]      



Задача 79257  (#М230)

Темы:   [ Против большей стороны лежит больший угол ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Пятиугольники ]
[ Правильный (равносторонний) треугольник ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 5-
Классы: 8,9,10

Доказать, что в выпуклый равносторонний (но не обязательно правильный) пятиугольник можно поместить правильный треугольник так, что одна из его сторон будет совпадать со стороной пятиугольника, а весь треугольник будет лежать внутри этого пятиугольника.
Прислать комментарий     Решение


Задача 73766  (#М231)

Темы:   [ Уравнения в целых числах ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Егорян Р.

Решите в натуральных числах уравнение  nx + ny = nz.

Прислать комментарий     Решение

Задача 73767  (#М232)

Темы:   [ Системы точек ]
[ Неравенства с углами ]
[ Метод ГМТ ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 7,8,9

а) К любому конечному множеству точек плоскости, обладающему тем свойством, что любые три точки из этого множества являются вершинами невырожденного тупоугольного треугольника, всегда можно добавить ещё одну точку так, что это свойство сохранится. Докажите это.

б) Справедливо ли аналогичное утверждение для бесконечного множества точек плоскости?
Прислать комментарий     Решение


Задача 79261  (#М233)

Темы:   [ НОД и НОК. Взаимная простота ]
[ Последовательности (прочее) ]
[ Числовые таблицы и их свойства ]
[ Индукция (прочее) ]
[ Алгоритм Евклида ]
Сложность: 4
Классы: 9,10,11

В концах отрезка пишутся две единицы. Посередине между ними пишется их сумма – число 2. Затем посередине между каждыми двумя соседними из написанных чисел снова пишется их сумма и так далее 1973 раза. Сколько раз будет написано число 1973?

Прислать комментарий     Решение

Задача 73769  (#М234)

Темы:   [ Разные задачи на разрезания ]
[ Перегруппировка площадей ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Вычисление площадей ]
[ Предел последовательности, сходимость ]
Сложность: 6-
Классы: 8,9,10

Дан квадрат со стороной 1. От него отсекают четыре уголка — четыре треугольника, у каждого из которых две стороны идут по сторонам квадрата и составляют 1/3 их длины. С полученным 8-угольником делают то же самое: от каждой вершины отрезают треугольник, две стороны которого составляют по 1/3 соответствующих сторон 8-угольника, и так далее. Получается последовательность многоугольников (каждый содержится в предыдущем). Найдите площадь фигуры, являющейся пересечением всех этих многоугольников (то есть образованной точками, принадлежащими всем многоугольникам).
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .