ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 3]      



Задача 97965  (#М1121)

Темы:   [ Композиции симметрий ]
[ Поворот помогает решить задачу ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4
Классы: 8,9

Дан треугольник ABC. Две прямые, симметричные прямой AC относительно прямых AB и BC соответственно, пересекаются в точке K.
Докажите, что прямая BK проходит через центр O описанной около треугольника ABC окружности.

Прислать комментарий     Решение

Задача 97966  (#М1122)

Темы:   [ Симметрические системы. Инволютивные преобразования ]
[ Системы алгебраических нелинейных уравнений ]
[ Монотонность и ограниченность ]
Сложность: 3
Классы: 8,9,10

Автор: Тутеску Л.

Решите систему уравнений:
   (x3 + x4 + x5)5 = 3x1,
   (x4 + x5 + x1)5 = 3x2,
   (x5 + x1 + x2)5 = 3x3,
   (x1 + x2 + x3)5 = 3x4,
   (x2 + x3 + x4)5 = 3x5.

Прислать комментарий     Решение

Задача 97969  (#М1123)

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
[ Теория групп (прочее) ]
Сложность: 4+
Классы: 8,9,10

Прямой угол разбит на бесконечное число квадратных клеток со стороной единица. Будем рассматривать ряды клеток, параллельные сторонам угла (вертикальные и горизонтальные ряды). Можно ли в каждую клетку записать натуральное число так, чтобы каждый вертикальный и каждый горизонтальный ряд клеток содержал все натуральные числа по одному разу?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .