Страница:
<< 1 2 3
4 >> [Всего задач: 20]
|
|
Сложность: 3+ Классы: 10,11
|
а) Выбраны 6 различных цветов; требуется раскрасить 6 граней куба, каждую в особый цвет из числа избранных. Сколькими геометрически различными способами можно это сделать? Геометрически различными называются две такие расцветки, которые нельзя совместить одну с другой при помощи вращений куба вокруг его центра.
б) Решить ту же задачу для случая раскраски граней додекаэдра в 12 различных цветов.
|
|
Сложность: 3+ Классы: 10,11
|
Пирамида, все боковые рёбра которой наклонены к плоскости основания
под углом
, имеет в основании равнобедренный треугольник с углом
, заключённым между равными сторонами. Определить двугранный угол при
ребре, соединяющем вершину пирамиды с вершиной угла
.
|
|
Сложность: 3+ Классы: 10,11
|
Найти объём правильной четырёхугольной пирамиды, стороны основания
которой
a, а плоские углы при вершине равны углам наклона боковых рёбер к
плоскости основания.
|
|
Сложность: 3+ Классы: 10,11
|
Высота усечённого конуса равна радиусу его большего основания;
периметр правильного шестиугольника, описанного около меньшего основания, равен
периметру равностороннего треугольника, вписанного в большее основание.
Определить угол наклона образующей конуса к плоскости основания.
|
|
Сложность: 3+ Классы: 10,11
|
Развертка боковой поверхности конуса представляет сектор с углом в
120
o; в конус вписана треугольная пирамида, углы основания которой
составляют арифметическую прогрессию с разностью
15
o. Определить угол
наклона к плоскости основания наименьшей из боковых граней.
Страница:
<< 1 2 3
4 >> [Всего задач: 20]