ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 4]      



Задача 78489  (#1)

Темы:   [ Раскладки и разбиения ]
[ Комбинаторика орбит ]
[ Перестановки и подстановки (прочее) ]
[ Перебор случаев ]
Сложность: 3-
Классы: 7,8

Завод выпускает погремушки в виде кольца с надетыми на него тремя красными и семью синими шариками. Сколько различных погремушек может быть выпущено? (Две погремушки считаются одинаковыми, если одна из них может быть получена из другой только передвижением шариков по кольцу и переворачиванием.)

Прислать комментарий     Решение

Задача 78490  (#3)

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Векторы помогают решить задачу ]
[ Вспомогательные проекции ]
Сложность: 4-
Классы: 7,8

Дан произвольный треугольник ABC и такая прямая l, пересекающая треугольник, что расстояние от неё до точки A равно сумме расстояний до этой прямой от точек B и C (причем B и C лежат по одну сторону от l). Доказать, что все такие прямые проходят через одну точку.
Прислать комментарий     Решение


Задача 78491  (#4)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Какое наибольшее количество чисел можно выбрать из набора 1, 2, ..., 1963 так, чтобы сумма каждых двух выбранных чисел делилась на 26?

Прислать комментарий     Решение

Задача 78492  (#5)

Темы:   [ Связность и разложение на связные компоненты ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8

Система точек, соединённых отрезками, называется "связной", если из каждой точки можно пройти в любую другую по этим отрезкам. Можно ли соединить пять точек в связную систему так, чтобы при стирании любого отрезка образовались ровно две связные системы точек, не связанные друг с другом? (Мы считаем, что в местах пересечения отрезков переход с одного из них на другой невозможен.)

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .