Страница:
<< 1 2 3 4 5 [Всего задач: 22]
На плоскости проведено 3000 прямых, причём никакие две из них не параллельны и
никакие три не пересекаются в одной точке. По этим прямым плоскость разрезана на
куски. Доказать, что среди кусков найдётся не менее: а) 1000 треугольников,
б) 2000 треугольников.
|
|
Сложность: 5+ Классы: 8,9,10,11
|
Озеро имеет форму невыпуклого
n-угольника. Докажите, что множество точек озера, из которых видны все его берега, либо пусто, либо заполняет внутренность выпуклого
m-угольника, где
m≤n.
Страница:
<< 1 2 3 4 5 [Всего задач: 22]