Страница: 1 [Всего задач: 5]
Задача
79268
(#1)
|
|
Сложность: 3+ Классы: 8,9,10
|
Доказать, что число 100...001, в котором 21974 + 21000 – 1 нулей, составное.
Задача
79269
(#2)
|
|
Сложность: 3+ Классы: 8,9,10
|
Доказать, что в круг радиуса 1 нельзя поместить без наложений два треугольника,
площадь каждого из которых больше 1.
Задача
79270
(#3)
|
|
Сложность: 4- Классы: 8,9,10
|
Две одинаковые шестерёнки имеют по 32 зубца. Их совместили и спилили
одновременно 6 пар зубцов. Доказать, что одну шестерёнку можно повернуть
относительно другой так, что в местах сломанных зубцов одной шестерёнки
окажутся целые зубцы второй шестерёнки.
Задача
79271
(#4)
|
|
Сложность: 3 Классы: 10,11
|
Из отрезков, имеющих длины
a,
b и
c, можно составить треугольник.
Доказать, что из отрезков с длинами
,
,
также можно составить треугольник.
Задача
79272
(#5)
|
|
Сложность: 6- Классы: 9,10,11
|
Выпуклый многоугольник обладает следующим свойством: если все прямые, на
которых лежат его стороны, параллельно перенести на расстояние 1 во внешнюю
сторону, то полученные прямые образуют многоугольник, подобный исходному,
причём параллельные стороны окажутся пропорциональными. Доказать, что в данный
многоугольник можно вписать окружность.
Страница: 1 [Всего задач: 5]