Страница: 1 [Всего задач: 5]
Задача
98302
(#1)
|
|
Сложность: 2+ Классы: 6,7,8
|
Сто человек ответили на вопрос: "Будет ли новый президент лучше прежнего?"
Из них a человек считают, что будет лучше, b – что будет такой же, и c – что будет хуже. Социологи построили два показателя "оптимизма" опрошенных: m = a + b/2 и n = a – c. Оказалось, что m = 40. Найдите n.
Задача
98303
(#2)
|
|
Сложность: 3- Классы: 7,8
|
Девять цифр: 1, 2, 3, ..., 9 выписаны в некотором порядке (так что
получилось девятизначное число). Рассмотрим все тройки цифр, идущих подряд, и
найдём сумму соответствующих семи трёхзначных чисел. Каково наибольшее возможное значение этой суммы?
|
|
Сложность: 3+ Классы: 7,8,9
|
Можно ли вычеркнуть из произведения 1!·2!·3!·...·100! один из факториалов так, чтобы произведение оставшихся было квадратом целого числа?
Задача
98305
(#4)
|
|
Сложность: 3+ Классы: 10,11
|
Можно ли разбить все пространство на правильные тетраэдры и октаэдры?
Задача
98306
(#5)
|
|
Сложность: 3+ Классы: 10,11
|
На сторонах треугольника ABC во внешнюю сторону построены квадраты ABMN, BCKL, ACPQ. На отрезках NQ и PK построены квадраты NQZT и PKXY. Разность площадей квадратов ABMN и BCKL равна d. Найдите разность площадей квадратов NQZT и PKXY
а) в случае, если угол ABC прямой,
б) в общем случае.
Страница: 1 [Всего задач: 5]