Страница: 1
2 >> [Всего задач: 6]
Задача
98416
(#1)
|
|
Сложность: 3 Классы: 8,9
|
Пусть a, b, c – натуральные числа.
а) Докажите, что если НОК(a, a + 5) = HOK(b, b + 5), то a = b.
б) Могут ли НОК(a, b) и НОК(а + с, b + с) быть равны?
Задача
98406
(#2)
|
|
Сложность: 3- Классы: 7,8,9
|
У Игоря и Вали есть по белому квадрату 8×8, разбитому на клетки 1×1. Они закрасили по одинаковому числу клеток на своих квадратах в синий цвет. Докажите, что удастся так разрезать эти квадраты на доминошки 2×1, что и из доминошек Игоря и из доминошек Вали можно будет сложить по квадрату 8×8 с одной и той же синей картинкой.
Отрезок AB пересекает две равные окружности и параллелен их линии центров, причём все точки пересечения прямой AB с окружностями лежат между A и B. Через точку A проводятся касательные к окружности, ближайшей к A, через точку B – касательные к окружности, ближайшей к B. Оказалось, что эти четыре касательные образуют четырёхугольник, содержащий внутри себя обе окружности. Докажите, что в этот четырёхугольник можно вписать окружность.
Задача
98408
(#4)
|
|
Сложность: 4- Классы: 7,8,9
|
В правильном 25-угольнике проведены все диагонали. Докажите, что нет девяти диагоналей, проходящих через одну внутреннюю точку 25-угольника.
Задача
98409
(#5)
|
|
Сложность: 4 Классы: 8,9
|
Имеется 20 бусинок десяти цветов, по две бусинки каждого цвета. Их как-то
разложили в 10 коробок. Известно, что можно выбрать по бусинке из каждой
коробки так, что все цвета будут представлены. Докажите, что число способов
такого выбора есть ненулевая степень двойки.
Страница: 1
2 >> [Всего задач: 6]