Страница: 1 [Всего задач: 5]
Задача
98513
(#1)
|
|
Сложность: 3+ Классы: 10,11
|
Автобус, едущий по маршруту длиной 100 км, снабжен компьютером, показывающим прогноз времени, остающегося до прибытия в конечный пункт. Это время рассчитывается исходя из предположения, что средняя скорость автобуса на оставшемся участке маршрута будет такой же, как и на уже пройденной его части. Спустя 40 минут после начала движения ожидаемое время до прибытия составляло 1 час и оставалось таким же ещё в течение пяти часов. Могло ли такое быть? Если да, то сколько километров проехал автобус к окончанию этих пяти часов?
Задача
98514
(#2)
|
|
Сложность: 3+ Классы: 10,11
|
Десятичная запись натурального числа a состоит из n цифр, а десятичная запись числа a³ состоит из m цифр.
Может ли m + n равняться 2001?
Задача
98515
(#3)
|
|
Сложность: 3+ Классы: 10,11
|
В треугольнике ABC точка X лежит на стороне AB, а точка Y – на стороне BC. Отрезки AY и CX пересекаются в точке Z. Известно, что AY = CY и
AB = CZ. Докажите, что точки B, X, Z и Y лежат на одной окружности.
Задача
98516
(#4)
|
|
Сложность: 4- Классы: 9,10,11
|
Двое играют на доске 3×100 клеток: кладут по очереди на свободные клетки
доминошки 1×2. Первый игрок кладёт доминошки, направленные вдоль доски,
второй – в поперечном направлении. Проигрывает тот, кто не может сделать ход. Кто из играющих может обеспечить себе победу (как бы ни играл его
противник), и как ему следует играть?
Задача
98517
(#5)
|
|
Сложность: 3+ Классы: 10,11
|
На поверхности правильного тетраэдра с ребром 1 отмечены девять точек.
Докажите, что среди этих точек найдутся две, расстояние между которыми (в пространстве) не превосходит 0,5.
Страница: 1 [Всего задач: 5]