Страница: 1
2 >> [Всего задач: 6]
Вычислите
.
На сторонах
AB ,
BC и
AC треугольника
ABC взяты
точки
C' ,
A' и
B' соответственно. Докажите, что
площадь треугольника
A'B'C' равна
,
где
R – радиус описанной окружности треугольника
ABC .
|
|
Сложность: 4+ Классы: 8,9,10
|
Положительные числа a, b и c таковы, что abc = 1. Докажите неравенство
|
|
Сложность: 5 Классы: 10,11
|
Можно ли разбить правильный тетраэдр с ребром 1 на правильные тетраэдры и
октаэдры, длины ребер каждого из которых меньше 1/100?
|
|
Сложность: 5+ Классы: 10,11
|
На доске написаны три функции: f1(x) = x + 1/x, f2(x) = x², f3(x) = (x – 1)². Можно складывать, вычитать и перемножать эти функции (в том числе возводить в квадрат, в куб, ...), умножать их на произвольное число, прибавлять к ним произвольное число, а также проделывать эти операции с полученными выражениями. Получите таким образом функцию 1/x.
Докажите, что если стереть с доски любую из функций f1, f2, f3, то получить 1/x невозможно.
Страница: 1
2 >> [Всего задач: 6]