ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 7843]      



Задача 116009

Тема:   [ Графики и ГМТ на координатной плоскости ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

На координатной плоскости изображен график функции  y = ax² + c  (см. рисунок). В каких точках график функции  y = cx + a  пересекает оси координат?

Прислать комментарий     Решение

Задача 116010

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
[ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

В равнобокой трапеции AВСD основания AD и ВС равны 12 и 6 соответственно, а высота равна 4. Сравните углы ВАС и САD.

Прислать комментарий     Решение

Задача 116011

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 7,8,9,10

Автор: Фольклор

На доске записаны числа 1, 21, 2², 2³, 24, 25. Разрешается стереть любые два числа и вместо них записать их разность – неотрицательное число.
Может ли на доске в результате нескольких таких операций остаться только число 15?

Прислать комментарий     Решение

Задача 116021

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

Найдите наибольшее натуральное n, при котором  n200 < 5300.

Прислать комментарий     Решение

Задача 116022

Темы:   [ Трапеции (прочее) ]
[ Признаки и свойства параллелограмма ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

В трапеции ABCD биссектриса тупого угла B пересекает основание AD в точке K – его середине, M – середина BC,  AB = BC.
Найдите отношение  KM : BD.

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 7843]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .