ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 7843]      



Задача 116023

Темы:   [ Признаки делимости на 3 и 9 ]
[ Доказательство от противного ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

Существует ли натуральное число, которое при делении на сумму своих цифр как в частном, так и в остатке дает число 2011?

Прислать комментарий     Решение

Задача 116055

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 6,7

Вдоль дорожки между домиками Незнайки и Синеглазки росли в ряд цветы: 15 пионов и 15 тюльпанов вперемешку. Отправившись из дома в гости к Незнайке, Синеглазка поливала все цветы подряд. После 10-го тюльпана вода закончилась, и 10 цветов остались не политыми. Назавтра, отправившись из дома в гости к Синеглазке, Незнайка собирал для неё все цветы подряд. Сорвав 6-й тюльпан, он решил, что для букета достаточно. Сколько цветов осталось расти вдоль дорожки?

Прислать комментарий     Решение

Задача 116060

Темы:   [ Задачи на проценты и отношения ]
[ Обыкновенные дроби ]
Сложность: 2
Классы: 5,6,7

"А это вам видеть пока рано", – сказала Баба-Яга своим 33 ученикам и скомандовала: "Закройте глаза!" Правый глаз закрыли все мальчики и треть девочек. Левый глаз закрыли все девочки и треть мальчиков. Сколько учеников всё-таки увидели то, что видеть пока рано?

Прислать комментарий     Решение

Задача 116130

Темы:   [ Построение треугольников по различным точкам ]
[ Центральная симметрия помогает решить задачу ]
[ Метод ГМТ ]
Сложность: 2
Классы: 8,9

Автор: Фольклор

Hа доске была нарисована система координат и отмечены точки  A(1, 2)  и  B(3, 1).  Cистему координат стерли.
Bосстановите ее по двум отмеченным точкам.

Прислать комментарий     Решение

Задача 116136

Темы:   [ Подобные треугольники (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 10,11

Автор: Шноль Д.Э.

Kаждый из двух подобных треугольников разрезали на два треугольника так, что одна из получившихся частей одного треугольника подобна одной из частей другого треугольника. Bерно ли, что оставшиеся части также подобны?

Прислать комментарий     Решение

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 7843]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .