Страница:
<< 51 52 53 54
55 56 57 >> [Всего задач: 7911]
Биссектриса треугольника делит одну из его сторон на отрезки 3 см и 5 см. В каких границах изменяется периметр треугольника?
На координатной плоскости изобразите все точки, координаты
которых являются решениями уравнения: y² – |y| = x² – |x|.
В выпуклом четырёхугольнике ABCD точки E, F и G – середины сторон AB, BC и AD соответственно, причём GE ⊥ AB, GF ⊥ BC. Найдите угол ACD.
|
|
Сложность: 2+ Классы: 6,7,8
|
В городе Васюки у всех семей были отдельные дома. В один прекрасный день каждая семья переехала в дом, который раньше занимала другая семья. В связи с этим было решено покрасить все дома в красный, синий или зелёный цвет, причём так, чтобы для каждой семьи цвет нового и старого домов не совпадал. Можно ли это сделать?
|
|
Сложность: 2+ Классы: 7,8,9
|
Натуральное число n записано в десятичной системе счисления. Известно, что если какая-то цифра входит в эту запись, то n делится нацело на эту цифру (0 в записи не встречается). Какое максимальное число различных цифр может содержать эта запись?
Страница:
<< 51 52 53 54
55 56 57 >> [Всего задач: 7911]