ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 [Всего задач: 56]      



Задача 109714  (#00.5.11.8)

Темы:   [ Числовые таблицы и их свойства ]
[ Раскраски ]
[ Правило произведения ]
[ Принцип Дирихле (прочее) ]
[ Сочетания и размещения ]
[ Доказательство от противного ]
Сложность: 5
Классы: 8,9,10,11

Клетки таблицы 100×100 окрашены в 4 цвета так, что в каждой строке и в каждом столбце ровно по 25 клеток каждого цвета.
Докажите, что найдутся две строки и два столбца, все четыре клетки на пересечении которых окрашены в разные цвета.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .