Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 56]
Задача
109726
(#00.5.9.4)
|
|
Сложность: 4+ Классы: 8,9,10
|
В стране несколько городов, некоторые пары городов соединены дорогами. При этом из каждого города выходит хотя бы три дороги.
Докажите, что существует циклический маршрут, длина которого не делится на 3.
Задача
109727
(#00.5.9.5)
|
|
Сложность: 3+ Классы: 8,9,10
|
На доску последовательно выписываются числа a1 = 1, a2, a3, ... по следующим правилам: an+1 = an – 2, если число
an – 2 – натуральное и еще не выписано на доску, в противном случае an+1 = an + 3. Докажите, что все квадраты натуральных чисел появятся в этой последовательности при прибавлении 3 к предыдущему числу.
Задача
109728
(#00.5.9.6)
|
|
Сложность: 5- Классы: 7,8,9
|
В некоторых клетках доски 2n×2n стоят чёрные и белые фишки.
С доски сначала снимаются все чёрные фишки, которые стоят в одной вертикали с какой-то белой, а затем все белые фишки, стоящие в одной горизонтали с какой-нибудь из оставшихся чёрных. Докажите, что либо чёрных, либо белых фишек на доске осталось не более n².
Задача
108146
(#00.5.9.7)
|
|
Сложность: 4 Классы: 8,9
|
На медиане CD треугольника ABC отмечена точка E.
Окружность S1, проходящая через точку E и касающаяся
прямой AB в точке A, пересекает сторону AC в точке M.
Окружность S2, проходящая через точку E и касающаяся
прямой AB в точке B, пересекает сторону BC в точке N.
Докажите, что описанная окружность треугольника CMN касается окружностей S1 и S2.
Задача
109730
(#00.5.9.8)
|
|
Сложность: 5 Классы: 8,9,10
|
По окружности расставлено 100 натуральных чисел, взаимно простых в совокупности. Разрешается прибавлять к любому числу наибольший общий делитель его соседей. Докажите, что при помощи таких операций можно сделать все числа попарно взаимно простыми.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 56]