Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 32]
Задача
110168
(#04.4.9.3)
|
|
Сложность: 4- Классы: 8,9,10
|
В ячейки куба 11×11×11 поставлены по одному числа 1, 2, ..., 1331. Из одного углового кубика в противоположный угловой отправляются два червяка. Каждый из них может проползать в соседний по грани кубик, при этом первый может проползать, если число в соседнем кубике отличается на 8, второй – если отличается на 9. Существует ли такая расстановка чисел, что оба червяка смогут добраться до противоположного углового кубика?
Задача
110160
(#04.4.9.4)
|
|
Сложность: 4 Классы: 8,9,10
|
Три натуральных числа таковы, что произведение каждых двух из них делится на сумму этих двух чисел.
Докажите, что эти три числа имеют общий делитель, больший единицы.
Задача
110161
(#04.4.9.5)
|
|
Сложность: 3+ Классы: 9,10,11
|
В клетки таблицы 100×100 записаны ненулевые цифры. Оказалось, что все 100 стозначных чисел, записанных по горизонтали, делятся на 11. Могло ли так оказаться, что ровно 99 стозначных чисел, записанных по вертикали, также делятся на 11?
Задача
110162
(#04.4.9.6)
|
|
Сложность: 4- Классы: 9,10,11
|
Положительные числа x, y, z таковы, что модуль разности любых двух из них меньше 2.
Докажите, что   + + > x + y + z.
Задача
108211
(#04.4.9.7)
|
|
Сложность: 4- Классы: 9,10,11
|
Внутри параллелограмма ABCD выбрана точка M, а внутри треугольника AMD точка N, причём ∠MNA + ∠ MCB = ∠MND + ∠MBC = 180°.
Докажите, что прямые MN и AB параллельны.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 32]