ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 110155  (#04.4.10.5)

Темы:   [ Свойства коэффициентов многочлена ]
[ Целочисленные и целозначные многочлены ]
[ НОД и НОК. Взаимная простота ]
[ Теорема Виета ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 9,10,11

Уравнение  xn + a1xn–1 + ... + an–1x + an = 0  с целыми ненулевыми коэффициентами имеет n различных целых корней.
Докажите, что если каждые два корня взаимно просты, то и числа an–1 и an взаимно просты.

Прислать комментарий     Решение

Задача 110156  (#04.4.10.6)

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 4
Классы: 8,9,10

Набор пятизначных чисел {N1 , Nk} таков, что любое пятизначное число, все цифры которого идут в неубывающем порядке, совпадает хотя бы в одном разряде хотя бы с одним их чисел N1 , Nk . Найдите наименьшее возможное значение k .
Прислать комментарий     Решение


Задача 110157  (#04.4.10.7)

Темы:   [ Производная и кратные корни ]
[ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
[ Признаки и свойства касательной ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 5
Классы: 9,10,11

Окружности σ 1 и σ 2 пересекаются в точках A и B . В точке A к σ 1 и σ 2 проведены соответственно касательные l1 и l2 . Точки T1 и T2 выбраны соответственно на окружностях σ 1 и σ 2 так, что угловые меры дуг T1A и AT2 равны (величина дуги окружности считается по часовой стрелке). Касательная t1 в точке T1 к окружности σ 1 пересекает l2 в точке M1 . Аналогично, касательная t2 в точке T2 к окружности σ 2 пересекает l1 в точке M2 . Докажите, что середины отрезков M1M2 находятся на одной прямой, не зависящей от положения точек T1 , T2 .
Прислать комментарий     Решение


Задача 110158  (#04.4.10.8)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 6
Классы: 8,9,10

Даны натуральные числа p<k<n . На бесконечной клетчатой плоскости отмечены некоторые клетки так, что в любом прямоугольнике (k+1)×n ( n клеток по горизонтали, k+1 – по вертикали) отмечено ровно p клеток. Докажите, что существует прямоугольник k×(n+1) (где n+1 клетка по горизонтали, k – по вертикали), в котором отмечено не менее p+1 клетки.
Прислать комментарий     Решение


Задача 110147  (#04.4.11.1)

Темы:   [ Лингвистика ]
[ Процессы и операции ]
[ Теория алгоритмов (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 8,9,10,11

В языке жителей Банановой Республики количество слов превышает количество букв в их алфавите. Докажите, что найдется такое натуральное k , для которого можно выбрать k различных слов, в записи которых используется ровно k различных букв.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .