ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 108209  (#04.4.8.6)

Темы:   [ Признаки и свойства параллелограмма ]
[ Три прямые, пересекающиеся в одной точке ]
[ Пересекающиеся окружности ]
[ Ромбы. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

Пусть ABCD – четырёхугольник с параллельными сторонами AD и BC; M и N – середины его сторон AB и CD соответственно. Прямая MN делит пополам отрезок, соединяющий центры окружностей, описанных около треугольников ABC и ADC. Докажите, что ABCD – параллелограмм.

Прислать комментарий     Решение

Задача 110171  (#04.4.8.7)

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 4-
Классы: 7,8,9

Набор пятизначных чисел $\{N_1, \dots, N_k\}$ таков, что любое пятизначное число, все цифры которого идут в возрастающем порядке, совпадает хотя бы в одном разряде хотя бы с одним из чисел $N_1, \dots, N_k$. Найдите наименьшее возможное значение $k$.
Прислать комментарий     Решение


Задача 110172  (#04.4.8.8)

Темы:   [ Целочисленные решетки (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Геометрия на клетчатой бумаге ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9,10

Автор: Храмцов Д.

Можно ли во всех точках плоскости с целыми координатами записать натуральные числа так, чтобы три точки с целыми координатами лежали на одной прямой тогда и только тогда, когда записанные в них числа имели общий делитель, больший единицы?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .