ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 819]      



Задача 64919

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
[ Площадь четырехугольника ]
Сложность: 3+
Классы: 9,10,11

Автор: Рожкова М.

Квадрат ABCD вписан в окружность. Точка M лежит на дуге BC, прямая AM пересекает BD в точке P, прямая DM пересекает AC в точке Q.
Докажите, что площадь четырёхугольника APQD равна половине площади квадрата.

Прислать комментарий     Решение

Задача 64966

Темы:   [ Средняя линия трапеции ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Медиана, проведенная к гипотенузе ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9,10

В трапеции с перпендикулярными диагоналями высота равна средней линии. Докажите, что трапеция равнобокая.

Прислать комментарий     Решение

Задача 64979

Темы:   [ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Пересекающиеся окружности ]
Сложность: 3+
Классы: 9,10,11

В треугольнике ABC  AA0 и BB0 – медианы, AA1 и BB1 – высоты. Описанные окружности треугольников CA0B0 и CA1B1 вторично пересекаются в точке Mc. Аналогично определяются точки Ma, Mb. Докажите, что точки Ma, Mb, Mc лежат на одной прямой, а прямые AMa, BMb, CMc параллельны.

Прислать комментарий     Решение

Задача 64986

Темы:   [ Вневписанные окружности ]
[ Вписанные и описанные окружности ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Центральная симметрия (прочее) ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 3+
Классы: 10,11

Точка касания вневписанной окружности со стороной треугольника и основание высоты, проведённой к этой стороне, симметричны относительно основания биссектрисы, проведённой к этой же стороне. Докажите, что эта сторона составляет треть периметра треугольника.

Прислать комментарий     Решение

Задача 65003

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Свойства биссектрис, конкуррентность ]
[ Средняя линия трапеции ]
[ Две касательные, проведенные из одной точки ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

В прямоугольном треугольнике ABC  (∠C = 90°)  биссектрисы AA1 и BB1 пересекаются в точке I. Пусть O – центр описанной окружности треугольника CA1B1. Докажите, что  OIAB.

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 819]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .