Страница:
<< 23 24 25 26
27 28 29 >> [Всего задач: 819]
В треугольнике ABC проведён серединный перпендикуляр к стороне AB до пересечения с другой стороной в некоторой точке C'. Аналогично построены точки A' и B'. Для каких исходных треугольников треугольник A'B'C' будет равносторонним?
Даны две единичные окружности ω1 и ω2, пересекающиеся в точках A и B. На окружности ω1 взяли произвольную точку M, а на окружности ω2 точку N. Через точки M и N провели ещё две единичные окружности ω3 и ω4. Обозначим повторное пересечение ω1 и ω3 через C, повторное пересечение окружностей ω2 и ω4 – через D. Докажите, что ACBD – параллелограмм.
На сторонах AB и AC треугольника ABC выбрали точки P и Q так, что PB = QC. Докажите, что PQ < BC.
Точка H – ортоцентр треугольника ABC. Касательные, проведённые к описанным окружностям треугольников CHB и AHB в точке H, пересекают прямую AC в точках A1 и C1 соответственно. Докажите, что A1H = C1H.
|
|
Сложность: 3+ Классы: 8,9,10
|
Вневписанная окружность прямоугольного треугольника ABC (∠B = 90°) касается стороны BC в точке A1, а прямой AC в точке A2. Прямая A1A2 пересекает (первый раз) вписанную окружность треугольника ABC в точке A'; аналогично определяется точка C'. Докажите, что AC || A'C'.
Страница:
<< 23 24 25 26
27 28 29 >> [Всего задач: 819]