ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 819]      



Задача 65031

Темы:   [ Правильный (равносторонний) треугольник ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведён серединный перпендикуляр к стороне AB до пересечения с другой стороной в некоторой точке C'. Аналогично построены точки A' и B'. Для каких исходных треугольников треугольник A'B'C' будет равносторонним?

Прислать комментарий     Решение

Задача 65032

Темы:   [ Пересекающиеся окружности ]
[ Три окружности одного радиуса ]
[ Векторы помогают решить задачу ]
Сложность: 3+
Классы: 8,9

Даны две единичные окружности ω1 и ω2, пересекающиеся в точках A и B. На окружности ω1 взяли произвольную точку M, а на окружности ω2 точку N. Через точки M и N провели ещё две единичные окружности ω3 и ω4. Обозначим повторное пересечение ω1 и ω3 через C, повторное пересечение окружностей ω2 и ω4 – через D. Докажите, что ACBD – параллелограмм.

Прислать комментарий     Решение

Задача 65033

Темы:   [ Против большей стороны лежит больший угол ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

На сторонах AB и AC треугольника ABC выбрали точки P и Q так, что  PB = QC.  Докажите, что  PQ < BC.

Прислать комментарий     Решение

Задача 65035

Темы:   [ Ортоцентр и ортотреугольник ]
[ Угол между касательной и хордой ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Точка H – ортоцентр треугольника ABC. Касательные, проведённые к описанным окружностям треугольников CHB и AHB в точке H, пересекают прямую AC в точках A1 и C1 соответственно. Докажите, что  A1H = C1H.

Прислать комментарий     Решение

Задача 65037

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Конкуррентность высот. Углы между высотами. ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 8,9,10

Вневписанная окружность прямоугольного треугольника ABC  (∠B = 90°)  касается стороны BC в точке A1, а прямой AC в точке A2. Прямая A1A2 пересекает (первый раз) вписанную окружность треугольника ABC в точке A'; аналогично определяется точка C'. Докажите, что  AC || A'C'.

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 819]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .