ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 116947  (#11.1)

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 3-
Классы: 8,9,10

Три натуральных числа таковы, что последняя цифра суммы любых двух из них является последней цифрой третьего числа. Произведение этих трёх чисел записали на доске, а затем всё, кроме трёх последних цифр этого произведения, стёрли. Какие три цифры могли остаться на доске?

Прислать комментарий     Решение

Задача 116948  (#11.2)

Тема:   [ Квадратные уравнения. Теорема Виета ]
Сложность: 3
Классы: 8,9,10

P(x) и Q(x) – приведённые квадратные трёхчлены, имеющие по два различных корня. Оказалось, что сумма двух чисел, получаемых при подстановке корней трёхчлена P(x) в трёхчлен Q(x), равна сумме двух чисел, получаемых при подстановке корней трёхчлена Q(x) в трёхчлен P(x). Докажите, что дискриминанты трёхчленов P(x) и Q(x) равны.

Прислать комментарий     Решение

Задача 116942  (#11.3)

Темы:   [ Теория множеств (прочее) ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 8,9,10

Можно ли множество всех натуральных чисел разбить на непересекающиеся конечные подмножества  A1, A2, A3, ...  так, чтобы при любом натуральном k сумма всех чисел, входящих в подмножество Ak, равнялась  k + 2013?

Прислать комментарий     Решение

Задача 116950  (#11.4)

Темы:   [ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Вспомогательные подобные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Симметрия помогает решить задачу ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9,10

Автор: Ивлев Ф.

В окружность Ω вписан остроугольный треугольник ABC, в котором  AB > BC.  Пусть P и Q – середины меньшей и большей дуг AC окружности Ω, соответственно, а M – основание перпендикуляра, опущенного из точки Q на отрезок AB. Докажите, что описанная окружность треугольника BMC делит пополам отрезок BP.

Прислать комментарий     Решение

Задача 116951  (#11.5)

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Принцип крайнего (прочее) ]
Сложность: 3
Классы: 8,9,10

Существуют ли такие 2013 различных натуральных чисел, что сумма каждых 2012 из них не меньше квадрата оставшегося?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .