Страница:
<< 1 2 3
4 5 6 >> [Всего задач: 29]
Задача
32899
(#3)
|
|
Сложность: 3 Классы: 9,10,11
|
Дан правильный 4n-угольник A1A2...A4n площади S, причём n > 1. Найдите площадь четырёхугольника A1AnAn +1An+2.
Задача
32893
(#3)
|
|
Сложность: 3+ Классы: 8,9,10
|
Про положительные числа a, b, c, d, e известно, что a² + b² + c² + d² + e² = ab + ac + ad + ae + bc + bd + be + cd + ce + de.
Докажите, что среди этих чисел найдутся три, которые не могут быть длинами сторон одного треугольника.
Дан такой выпуклый четырехугольник ABCD, что AB = BC и AD = DC. Точки K, L и M – середины отрезков AB, CD и AC соответственно. Перпендикуляр, проведенный из точки A к прямой BC, пересекается с перпендикуляром, проведенным из точки C к прямой AD, в точке H. Докажите, что прямые KL и HM перпендикулярны.
Задача
32887
(#3)
|
|
Сложность: 3+ Классы: 7,8,9
|
На занятии кружка 10 школьников решали 10 задач. Все школьники решили разное количество задач; каждую задачу решило одинаковое количество школьников. Один из этих десяти школьников, Боря, решил задачи с первой по пятую и не решил задачи с шестой по девятую. Решил ли он десятую задачу?
|
|
Сложность: 4- Классы: 9,10,11
|
Сравните числа
Страница:
<< 1 2 3
4 5 6 >> [Всего задач: 29]