Страница:
<< 1 2
3 4 5 6 >> [Всего задач: 29]
|
|
Сложность: 4- Классы: 5,6,7
|
Найдите все пары простых чисел p и q, обладающие следующим свойством: 7p + 1 делится на q, а 7q + 1 делится на p.
Задача
32898
(#2)
|
|
Сложность: 3+ Классы: 8,9,10
|
На длинной скамейке сидели мальчик и девочка. К ним по одному подошли еще 20 детей, и каждый из них садился между какими-то двумя уже сидящими. Назовём девочку отважной, если она садилась между двумя соседними мальчиками, а мальчика – отважным, если он садился между двумя соседними девочками. Когда все сели, оказалось, что мальчики и девочки сидят на скамейке, чередуясь. Сколько из них были отважными?
Задача
32892
(#2)
|
|
Сложность: 3+ Классы: 8,9
|
В треугольнике ABC, где угол B прямой, а угол A меньше угла C, проведена медиана BM. На стороне AC взята точка L так, что ∠ABM = ∠MBL. Описанная окружность треугольника BML пересекает сторону AB в точке N. Докажите, что AN = BL.
Задача
32886
(#2)
|
|
Сложность: 3+ Классы: 7,8,9
|
Треугольник ABC равнобедренный (AB = BC). Точка M – середина стороны AB, точка P – середина отрезка CM, точка N делит сторону BC в отношении 3 : 1 (считая от вершины B). Докажите, что AP = MN.
|
|
Сложность: 3+ Классы: 9,10,11
|
Найдите такое значение $a > 1$, при котором уравнение $a^x = \log_a x$ имеет единственное решение.
Страница:
<< 1 2
3 4 5 6 >> [Всего задач: 29]