Страница:
<< 4 5 6 7 8
9 10 >> [Всего задач: 48]
Задача
65371
(#9.4)
|
|
Сложность: 4+ Классы: 9,10,11
|
Дан фиксированный треугольник ABC. По его описанной окружности движется точка P так, что хорды BC и AP пересекаются. Прямая AP разрезает треугольник BPC на два меньших, центры вписанных окружностей которых обозначим через I1 и I2 соответственно. Прямая I1I2 пересекает прямую BC в точке Z. Докажите, что все прямые ZP проходят через фиксированную точку.
Задача
65372
(#9.5)
|
|
Сложность: 3+ Классы: 9,10,11
|
В неравнобедренном прямоугольном треугольнике ABC точка M – середина гипотенузы AC, точки Ha, Hc – ортоцентры треугольников ABM, CBM соответственно. Докажите, что прямые AHc, CHa пересекаются на средней линии треугольника ABC.
Задача
65373
(#9.6)
|
|
Сложность: 4 Классы: 9,10,11
|
Диагонали выпуклого четырёхугольника ABCD перпендикулярны. Точки A', B', C', D' – центры описанных окружностей треугольников ABD, BCA, CDB, DAC соответственно. Докажите, что прямые AA', BB', CC', DD' пересекаются в одной точке.
Задача
65374
(#9.7)
|
|
Сложность: 4+ Классы: 9,10,11
|
В остроугольном неравнобедренном треугольнике ABC высоты AA' и BB' пересекаются в точке H, а медианы треугольника AHB пересекаются в точке M. Прямая CM делит отрезок A'B' пополам. Найдите угол C.
Задача
65375
(#9.8)
|
|
Сложность: 5- Классы: 9,10,11
|
В треугольнике ABC серединный перпендикуляр к BC пересекает прямые AB и AC в точках AB и AC соответственно. Обозначим через Oa центр описанной окружности треугольника AABAC. Аналогично определим Ob и Oc. Докажите, что описанная окружность треугольника OaObOc касается описанной окружности исходного треугольника.
Страница:
<< 4 5 6 7 8
9 10 >> [Всего задач: 48]