Страница: 1 [Всего задач: 5]
Задача
65860
(#1)
|
|
Сложность: 3 Классы: 8,9,10
|
Взяли пять натуральных чисел и для каждых двух записали их сумму.
Могло ли оказаться, что все 10 получившихся сумм оканчиваются разными цифрами?
Задача
65861
(#2)
|
|
Сложность: 3+ Классы: 8,9,10
|
На прямой отмечено четыре точки и ещё одна точка отмечена вне прямой. Всего существует шесть треугольников с вершинами в этих точках.
Какое наибольшее количество из них могут быть равнобедренными?
Задача
65862
(#3)
|
|
Сложность: 3+ Классы: 8,9,10
|
На окружности отмечено 100 точек. Эти точки нумеруются числами от 1 до 100 в некотором порядке.
а) Докажите, что при любой нумерации точки можно разбить на пары так, чтобы отрезки, соединяющие точки в парах, не пересекались, а все суммы в парах были нечётны.
б) Верно ли, что при любой нумерации можно разбить точки на пары так, чтобы отрезки, соединяющие точки в парах, не пересекались, а все суммы в парах были чётны?
Задача
65863
(#4)
|
|
Сложность: 3+ Классы: 8,9,10
|
Даны параллелограмм ABCD и такая точка K, что AK = BD. Точка M – середина CK. Докажите, что ∠BMD = 90°.
Задача
65864
(#5)
|
|
Сложность: 3+ Классы: 8,9,10
|
Сто медвежат нашли в лесу ягоды: самый младший успел схватить 1 ягоду, медвежонок постарше – 2 ягоды, следующий – 4 ягоды, и так далее, самому старшему досталось 299 ягод. Лиса предложила им поделить ягоды "по справедливости". Она может подойти к двум медвежатам и распределить их ягоды поровну между ними, а если при этом возникает лишняя ягода, то лиса её съедает. Такие действия она продолжает до тех пор, пока у всех медвежат не станет ягод поровну. Какое наименьшее количество ягод может оставить медвежатам лиса?
Страница: 1 [Всего задач: 5]