Страница: 1
2 >> [Всего задач: 7]
Задача
66827
(#1)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Назовём сложностью целого числа $n$ > 1 количество сомножителей в его разложении на простые. Для каких $n$ все числа между $n$ и 2$n$ имеют сложность
а) не больше, чем у $n$;
б) меньше, чем у $n$?
Задача
66828
(#2)
|
|
Сложность: 4- Классы: 8,9,10,11
|
Два остроугольных треугольника $ABC$ и $A_{1}B_{1}C_{1}$ таковы, что точки $B_{1}$ и $C_{1}$ лежат на стороне $BC$, а точка $A_{1}$ – внутри треугольника ABC. Пусть $S$ и $S_{1}$ – соответственно площади этих треугольников. Докажите, что $\frac{S}{AB+AC} > \frac{S_1}{A_1B_1 + A_1C_1}$.
Задача
66829
(#3)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Есть 100 внешне неразличимых монет трёх типов: золотые, серебряные и медные (каждый тип встречается хотя бы раз). Известно, что золотые весят по 3 г, серебряные – по 2 г, медные – по 1 г.
Как на чашечных весах без гирек определить тип у всех монет не более чем за 101 взвешивание?
Задача
66830
(#4)
|
|
Сложность: 4- Классы: 8,10,11
|
Из центра $O$ описанной окружности Ω треугольника $ABC$ опустили перпендикуляры $OP$ и $OQ$ на биссектрисы внутреннего и внешнего углов при вершине $B$.
Докажите, что прямая $PQ$ делит пополам отрезок, соединяющий середины сторон $CB$ и $AB$.
Задача
66831
(#5)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Назовём пару ($m, n$) различных натуральных чисел $m$ и n хорошей, если $mn$ и $(m + 1)(n + 1)$ – точные квадраты.
Докажите, что для каждого натурального $m$ существует хотя бы одно такое $n > m$, что пара ($m, n$) хорошая.
Страница: 1
2 >> [Всего задач: 7]