Страница: 1
2 >> [Всего задач: 7]
Задача
66899
(#1)
|
|
Сложность: 3 Классы: 7,8,9,10
|
Число $2021 = 43\cdot47$ составное. Докажите, что если вписать в числе $2021$ сколько угодно восьмёрок между $20$ и $21$, тоже получится составное число.
Задача
66900
(#2)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В комнате находится несколько детей и куча из 1000 конфет. Дети по очереди подходят к куче. Каждый подошедший делит количество конфет в куче на количество детей в комнате, округляет (если получилось нецелое), забирает полученное число конфет и выходит из комнаты. При этом мальчики округляют вверх, а девочки – вниз. Докажите, что суммарное количество конфет у мальчиков, когда все выйдут из комнаты, не зависит от порядка детей в очереди.
Задача
66901
(#3)
|
|
Сложность: 3+ Классы: 7,8,9
|
Треугольник $ABC$ равносторонний. На сторонах $AB$ и $AC$ выбрали точки $E$ и $F$, а на продолжении стороны $AB$ – точку $K$ так, что $AE=CF=BK$. Точка $P$ – середина $EF$. Докажите, что угол $KPC$ прямой.
Задача
66902
(#4)
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Путешественник прибыл на остров, где живут 50 аборигенов, каждый из которых либо рыцарь, либо лжец. Все аборигены встали в круг, и каждый назвал сначала возраст своего соседа слева, а потом возраст соседа справа. Известно, что каждый рыцарь назвал оба числа верно, а каждый лжец какой-то из возрастов (по своему выбору) увеличил на 1, а другой – уменьшил на 1. Всегда ли путешественник по высказываниям аборигенов сможет определить, кто из них рыцарь, а кто лжец?
Задача
66903
(#5)
|
|
Сложность: 3+ Классы: 7,8,9,10
|
В центре каждой клетки клетчатого прямоугольника $M$ расположена точечная лампочка, изначально все они погашены.
За ход разрешается провести любую прямую, не задевающую лампочек, и зажечь все лампочки по какую-то одну сторону от этой прямой, если все они погашены.
Каждым ходом должна зажигаться хотя бы одна лампочка. Требуется зажечь все лампочки, сделав как можно больше ходов. Какое максимальное число ходов удастся сделать, если
а) $M$ – квадрат $21\times21$;
б) $M$ – прямоугольник $20\times21$?
Страница: 1
2 >> [Всего задач: 7]