ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 67305  (#6)

Темы:   [ Квадратные корни (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4+
Классы: 7,8,9,10,11

Вася выбрал $100$ различных натуральных чисел из множества ${1, 2, 3, \ldots, 120}$ и расставил их в некотором порядке вместо звёздочек в выражении (всего $100$ звёздочек и $50$ знаков корня) $$ \sqrt{(* + *)\cdot \sqrt{(* + *) \cdot \sqrt{ \ldots \sqrt{*+*}}}} . $$ Могло ли значение полученного выражения оказаться целым числом?
Прислать комментарий     Решение


Задача 67306  (#1)

Темы:   [ Обыкновенные дроби ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3
Классы: 7,8,9,10,11

Действительные числа $a$, $b$, $c$, $d$ таковы, что $$\frac{a}{b} + \frac{b}{a} = \frac{c}{d} + \frac{d}{c}.$$ Докажите, что произведение каких-то двух чисел из $a$, $b$, $c$, $d$ равно произведению двух других.
Прислать комментарий     Решение


Задача 67301  (#2)

Темы:   [ Сочетания и размещения ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7,8,9

На урок физкультуры пришло $12$ детей, все разной силы. Учитель $10$ раз делил их на две команды по $6$ человек, каждый раз новым способом, и проводил состязание по перетягиванию каната. Могло ли оказаться так, что все $10$ раз состязание закончилось вничью (то есть суммы сил детей в командах были равны)?
Прислать комментарий     Решение


Задача 67307  (#3)

Темы:   [ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 6,7,8,9,10,11

Автор: Дидин М.

Петя загадал положительную несократимую дробь $x = {m}{n}$. За один ход Вася называет положительную несократимую дробь $y$, не превосходящую 1, и Петя в ответ сообщает Васе числитель несократимой дроби, равной сумме $x+y$. Как Васе за два хода гарантированно узнать $x$?
Прислать комментарий     Решение


Задача 67308  (#4)

Темы:   [ Угол между касательной и хордой ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9,10,11

На описанной окружности треугольника $ABC$ отметили середины дуг $BAC$ и $CBA$ – точки $M$ и $N$ соответственно, и середины дуг $BC$ и $AC$ – точки $P$ и $Q$ соответственно. Окружность $\omega_1$ касается стороны $BC$ в точке $A_1$ и продолжений сторон $AC$ и $AB$. Окружность $\omega_2$ касается стороны $AC$ в точке $B_1$ и продолжений сторон $BA$ и $BC$. Оказалось, что $A_1$ лежит на отрезке $NP$. Докажите, что $B_1$ лежит на отрезке $MQ$.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .