ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 67423  (#1)

Темы:   [ Квадратный трехчлен (прочее) ]
[ Последовательности (прочее) ]
Сложность: 3-
Классы: 8,9,10,11

В последовательности действительных чисел $a_1$, $a_2$, $\dots$ каждое число, начиная с третьего, равно полусумме двух предыдущих. Докажите, что все параболы вида $y=x^2+a_nx+a_{n+1}$ (где $n=1$, $2$, $3$, $\dots$) имеют общую точку.
Прислать комментарий     Решение


Задача 67424  (#2)

Тема:   [ Отношения площадей подобных фигур ]
Сложность: 3
Классы: 8,9,10,11

Произвольный прямоугольник разбит на прямоугольные треугольники так, как показано на рисунке ниже. В каждый треугольник вписан квадрат со стороной, лежащей на гипотенузе. Что больше: площадь самого большого квадрата или сумма площадей трёх остальных квадратов?

Прислать комментарий     Решение

Задача 67425  (#3)

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Если Вася делит пирог или кусок пирога на две части, то всегда делает их равными по массе. А если делит на большее число частей, то может сделать их какими угодно, но обязательно все разной массы. За несколько таких дележей Вася разрезал пирог на $N$ частей. При каждом ли $N\geqslant 10$ все части могли получиться равными по массе? (Объединять части нельзя.)
Прислать комментарий     Решение


Задача 67426  (#4)

Темы:   [ Пирамида (прочее) ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Верно ли, что сумма внутренних двугранных углов при основании треугольной пирамиды всегда меньше суммы внешних?
Прислать комментарий     Решение


Задача 67427  (#5)

Темы:   [ Теория графов (прочее) ]
[ Принцип крайнего (прочее) ]
[ Раскладки и разбиения ]
Сложность: 4
Классы: 9,10,11

В математическом кружке $45$ школьников, некоторые дружат. Как ни разбивай их на тройки, в какой-то тройке все будут друг с другом дружить. Докажите, что всех школьников можно разбить на тройки так, чтобы в каждой тройке хотя бы какие-то двое дружили друг с другом.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .