ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Как выглядит формула для корней биквадратного уравнения   x4 + px2 + q = 0,  если  p2 – 4q < 0?

Вниз   Решение


Докажите, что из точки A, лежащей вне окружности, можно провести ровно две касательные к окружности, причем длины этих касательных (т. е. расстояния от A до точек касания) равны.

ВверхВниз   Решение


По кругу стоит 101 мудрец. Каждый из них либо считает, что Земля вращается вокруг Юпитера, либо считает, что Юпитер вращается вокруг Земли. Один раз в минуту все мудрецы одновременно оглашают свои мнения. Сразу после этого каждый мудрец, оба соседа которого думают иначе, чем он, меняет своё мнение, а остальные – не меняют. Докажите, что через некоторое время мнения перестанут меняться.

ВверхВниз   Решение


Как, не имея никаких измерительных средств, отмерить 50 см от шнурка, длина которого ⅔ метра?

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 19]      



Задача 61089

Темы:   [ Алгебраические уравнения в C. Извлечение корня ]
[ Геометрия комплексной плоскости ]
[ Правильные многоугольники ]
Сложность: 2
Классы: 9,10,11

Докажите, что числа wk  (k = 0, ..., n – 1),  являющиеся корнями уравнения  wn = z,  при любом  z ≠ 0  располагаются в вершинах правильного n-угольника.

Прислать комментарий     Решение

Задача 61079

Тема:   [ Алгебраические уравнения в C. Извлечение корня ]
Сложность: 2+
Классы: 9,10,11

Докажите, что квадратные корни из комплексного числа  z = a + ib  находятся среди чисел

w = ± ± i .
Как нужно выбрать знак перед вторым слагаемым в скобке, чтобы получить два нужных корня, а не сопряженные к ним числа?

Прислать комментарий     Решение

Задача 61080

Тема:   [ Алгебраические уравнения в C. Извлечение корня ]
Сложность: 2+
Классы: 9,10,11

Вычислите
  а)  ;   б)  ;   в)  ;   г)  ;   д)  ;   е)  .

Прислать комментарий     Решение

Задача 61081

Тема:   [ Алгебраические уравнения в C. Извлечение корня ]
Сложность: 2+
Классы: 9,10,11

Решите в комплексных числах следующие квадратные уравнения:
  а)  z2 + z + 1 = 0;   б)  z2 + 4z + 29 = 0;   в)  z2 – (2 + i)z + 2i = 0;   г)  z2 – (3 + 2i)z + 6i = 0;   д)  z2 – (3 – 2i)z + 5 – 5i = 0;   е)  z2 – (5 + 2i)z + 5 + 5i = 0.

Прислать комментарий     Решение

Задача 61083

Тема:   [ Алгебраические уравнения в C. Извлечение корня ]
Сложность: 3-
Классы: 9,10,11

Как выглядит формула для корней биквадратного уравнения   x4 + px2 + q = 0,  если  p2 – 4q < 0?

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .