ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Золотых А.

Каждая сторона треугольника разделена на три равные части. Точки деления служат вершинами двух треугольников, пересечение которых – шестиугольник. Найдите площадь этого шестиугольника, если площадь данного треугольника равна S.

   Решение

Задачи

Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 375]      



Задача 32892

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вспомогательные равные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC, где угол B прямой, а угол A меньше угла C, проведена медиана BM. На стороне AC взята точка L так, что  ∠ABM = ∠MBL.  Описанная окружность треугольника BML пересекает сторону AB в точке N. Докажите, что  AN = BL.

Прислать комментарий     Решение

Задача 52354

Темы:   [ Вспомогательные равные треугольники ]
[ Вспомогательная окружность ]
[ Признаки подобия ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Дан параллелограмм ABCD с острым углом при вершине A. На лучах AB и CB отмечены точки H и K соответственно, причём  CH = BC  и  AK = AB.
  а) Докажите, что  DH = DK.
  б) Докажите, что треугольники DKH и ABK подобны.

Прислать комментарий     Решение

Задача 52792

Темы:   [ Биссектриса делит дугу пополам ]
[ Теорема косинусов ]
[ Прямая Эйлера и окружность девяти точек ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC  BC = 4,  AB = 2 .   Известно, что центр окружности, проходящей через середины сторон треугольника, лежит на биссектрисе угла C. Найдите AC.

Прислать комментарий     Решение

Задача 54384

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Теорема Пифагора (прямая и обратная) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В окружность диаметра 1 вписан четырёхугольник ABCD, у которого угол D прямой,  AB = BC.
Найдите площадь четырёхугольника ABCD, если его периметр равен  .

Прислать комментарий     Решение

Задача 66697

Темы:   [ Касательные прямые и касающиеся окружности (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Вспомогательные подобные треугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Поворотная гомотетия (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Две окружности с центрами $O_1$ и $O_2$ касаются внешним образом в точке $T$. К ним проведена общая внешняя касательная, касающаяся первой окружности в точке $A$, а второй – в точке $B$. Общая касательная к окружностям, проведённая в точке $T$, пересекает прямую $AB$ в точке $M$. Пусть $AC$ – диаметр первой окружности. Докажите, что отрезки $CM$ и $AO_2$ перпендикулярны.

Прислать комментарий     Решение

Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 375]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .