ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Шмаров В.

Точка M – середина стороны AC остроугольного треугольника ABC, в котором  AB > BC.  Касательные к описанной окружности Ω треугольника ABC, проведённые в точках A и C, пересекаются в точке P. Отрезки BP и AC пересекаются в точке S. Пусть AD – высота треугольника BP. Описанная окружность ω треугольника CSD второй раз пересекает окружность Ω в точке K. Докажите, что  ∠CKM = 90°.

Вниз   Решение


Стороны четырёхугольника равны a, b, c и d. Известно, что в этот четырёхугольник можно вписать окружность и около него можно описать окружность. Докажите, что его площадь равна $ \sqrt{abcd}$.

ВверхВниз   Решение


Двое играющих по очереди красят стороны n-угольника. Первый может покрасить сторону, которая граничит с нулём или двумя покрашенными сторонами, второй – сторону, которая граничит с одной покрашенной стороной. Проигрывает тот, кто не может сделать хода. При каких n второй может выиграть, как бы ни играл первый?

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 93]      



Задача 57199

Тема:   [ Метод ГМТ ]
Сложность: 4
Классы: 8,9

Даны точка A и окружность S. Проведите через точку A прямую так, чтобы хорда, высекаемая окружностью S на этой прямой, имела данную длину d.
Прислать комментарий     Решение


Задача 57200

Темы:   [ Метод ГМТ ]
[ Признаки и свойства параллелограмма ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9

Дан четырёхугольник ABCD. Впишите в него параллелограмм с заданными направлениями сторон.

Прислать комментарий     Решение

Задача 54603

Темы:   [ Метод ГМТ ]
[ Пересекающиеся окружности ]
Сложность: 4+
Классы: 8,9

С помощью циркуля и линейки около данного треугольника опишите треугольник, равный другому данному треугольнику.

Прислать комментарий     Решение


Задача 54604

Темы:   [ Метод ГМТ ]
[ Пересекающиеся окружности ]
Сложность: 4+
Классы: 8,9

С помощью циркуля и линейки в данный треугольник впишите треугольник, равный другому данному треугольнику.

Прислать комментарий     Решение


Задача 78554

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Метод ГМТ ]
Сложность: 2+
Классы: 9,10

Внутри данного треугольника ABC найти такую точку O, чтобы площади треугольников AOB, BOC, COA относились как 1 : 2 : 3.
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 93]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .