ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Точки A, B и C лежат на одной прямой (точка B расположена между точками A и C). Через точки A и B проводятся окружности, а через точку C — касательные к ним. Найдите геометрическое место точек касания.
![]() ![]() Найти все такие натуральные числа p, что p и 2p² + 1 – простые. ![]() ![]() ![]() Евклидово доказательство бесконечности множества простых чисел наводит на мысль определить рекуррентно числа Евклида: ![]() ![]() |
Страница: 1 2 3 4 5 >> [Всего задач: 23]
Дана функция f, определённая на множестве действительных чисел и принимающая действительные значения. Известно, что для любых x и y, таких, что x > y, верно неравенство (f(x))² ≤ f(y). Докажите, что множество значений функции содержится в промежутке [0,1].
Функция f(x) на отрезке [a, b] равна максимуму из нескольких функций вида y = C·10–|x–d| (с различными d и C, причём все C положительны). Дано,
что
Функции f(x) – x и f(x²) – x6 определены при всех положительных x и возрастают.
Страница: 1 2 3 4 5 >> [Всего задач: 23] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |