ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Когда из бассейна сливают воду, уровень h воды в нём меняется в зависимости от времени t по закону

h(t)=at2+bt+c,

а в момент t0 окончания слива выполнены равенства h(t0)=h'(t0)=0 . За сколько часов вода из бассейна сливается полностью, если за первый час уровень воды в нём уменьшается вдвое?

Вниз   Решение


В остроугольном треугольнике $ABC$ $H$ – ортоцентр; $A_1$, $B_1$, $C_1$ – точки касания вписанной окружности с $BC$, $CA$, $AB$ соответственно; $E_A$, $E_B$, $E_C$ – середины $AH$, $BH$, $CH$ соответственно; окружность с центром $E_A$, проходящая через $A$, повторно пересекает биссектрису угла $A$ в точке $A_2$; точки $B_2$, $C_2$ определены аналогично. Докажите, что треугольники $A_1B_1C_1$ и $A_2B_2C_2$ подобны.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 172]      



Задача 116105

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8,9

Расстояние между параллельными прямыми равно 24. На одной из них лежит точка C , на другой — точки A и B , причём треугольник ABC — равнобедренный и остроугольный, а его боковая сторона равна 25. Найдите радиус окружности, вписанной в треугольник ABC .
Прислать комментарий     Решение


Задача 116298

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3
Классы: 8,9

Стороны AB и AC треугольника равны соответственно a и b . На медиане, проведённой к стороне BC взята точка M . Сумма расстояний от этой точки до прямых AB и AC равна c . Найдите эти расстояния.
Прислать комментарий     Решение


Задача 35015

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Правильный (равносторонний) треугольник ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3+
Классы: 8,9

Докажите, что сумма расстояний от любой точки внутри равностороннего треугольника до его сторон не зависит от положения точки.
Прислать комментарий     Решение


Задача 52788

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

В треугольник со сторонами a и b и углом между ними $ \alpha$ вписана полуокружность, диаметр которой лежит на третьей стороне. Найдите радиус полуокружности.

Прислать комментарий     Решение


Задача 53792

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Формула Герона ]
[ Подобные треугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В треугольник со сторонами 10, 17 и 21 вписан прямоугольник с периметром 24 так, что одна его сторона лежит на большей стороне треугольника.
Найдите стороны прямоугольника.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 172]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .