ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Доска имеет форму креста, который получается, если из квадратной доски 4×4 выкинуть угловые клетки.
Можно ли обойти её ходом шахматного коня и вернуться на исходное поле, побывав на всех полях ровно по разу?

Вниз   Решение


В классе 33 человека. У каждого ученика спросили, сколько у него в классе тезок и сколько однофамильцев (включая родственников). Оказалось, что среди названных чисел встретились все целые от 0 до 10 включительно. Докажите, что в классе есть два ученика с одинаковыми именем и фамилией.

ВверхВниз   Решение


В четырёхугольнике ABCD точки K , L , M , N – середины сторон соответственно AB , BC , CD , DA . Прямые AL и CK пересекаются в точке P , прямые AM и CN – пересекаются в точке Q . Оказалось, что APCQ – параллелограмм. Докажите, что ABCD – тоже параллелограмм.

ВверхВниз   Решение


Дана выпуклая фигура и точка A внутри нее. Докажите, что найдется хорда (т.е. отрезок, соединяющий две граничные точки выпуклой фигуры), проходящая через точку A и делящаяся точкой A пополам.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 180]      



Задача 115275

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

В остроугольном треугольнике ABC проведены высота BH и медиана AM. Известно, что угол MCA в два раза больше угла MAC,  BC = 10.
Найдите AH.

Прислать комментарий     Решение

Задача 115695

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Медиана и высота прямоугольного треугольника, проведённые из вершины прямого угла, равны 5 и 4. Найдите катеты.

Прислать комментарий     Решение

Задача 32892

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вспомогательные равные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC, где угол B прямой, а угол A меньше угла C, проведена медиана BM. На стороне AC взята точка L так, что  ∠ABM = ∠MBL.  Описанная окружность треугольника BML пересекает сторону AB в точке N. Докажите, что  AN = BL.

Прислать комментарий     Решение

Задача 52926

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вспомогательные подобные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Из вершины B равнобедренного треугольника ABC на его основание AC опущена высота BD. Каждая из боковых сторон AB и BC треугольника ABC равна 8. В треугольнике BCD проведена медиана DE. В треугольник BDE вписана окружность, касающаяся стороны BE в точке K и стороны DE в точке M. Отрезок KM равен 2. Найдите угол A.

Прислать комментарий     Решение


Задача 52982

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Теорема Пифагора (прямая и обратная) ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC к стороне AC проведены высота BK и медиана MB, причём  AM = BM.  Найдите косинус угла KBM, если  AB = 1,  BC = 2.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 180]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .