ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В коридоре длиной 100 м постелено 20 дорожек общей длиной 1 км. Ширина каждой дорожки равна ширине коридора.
Какова максимально возможная суммарная длина незастеленных участков коридора?

Вниз   Решение


а) Несколько чёрных квадратов со стороной 1 см прибиты к белой плоскости одним гвоздём толщины 0,1 см (гвоздь не задевает границ квадратов). Образовалась многоугольная чёрная фигура. Может ли периметр этой фигуры быть больше 1 км?

б) Та же задача, но гвоздь имеет толщину 0 (то есть "пробивает" квадрат в точке).

в) Несколько чёрных квадратов со стороной 1 лежат на белой плоскости, образуя многоугольную чёрную фигуру (возможно, состоящую из нескольких кусков и имеющую дырки). Может ли отношение периметра этой фигуры к её площади быть больше 100000?

ВверхВниз   Решение


На боковых рёбрах PA , PB , PC (или на их продолжениях) треугольной пирамиды PABC взяты точки M , N , K соответственно. Докажите, что отношение объёмов пирамид PMNK и PABC равно

· · .

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 87102

Темы:   [ Длины и периметры (геометрические неравенства) ]
[ Куб ]
Сложность: 3
Классы: 8,9

Дан куб с ребром 1. Докажите, что сумма расстояний от произвольной точки до его вершин не меньше 4 .
Прислать комментарий     Решение


Задача 87103

Темы:   [ Длины и периметры (геометрические неравенства) ]
[ Параллелепипеды ]
Сложность: 3
Классы: 8,9

Пусть a , b и c – стороны параллелепипеда, d – одна из его диагоналей. Докажите, что a2 + b2 + c2 d2 .
Прислать комментарий     Решение


Задача 87105

Темы:   [ Длины и периметры (геометрические неравенства) ]
[ Неравенство треугольника (прочее) ]
Сложность: 3
Классы: 8,9

В пространстве рассматриваются два отрезка AB и CD , не лежащие в одной плоскости. Пусть M и K – их середины. Докажите, что MK < (AD + BC) .
Прислать комментарий     Решение


Задача 64319

 [Неравенство Птолемея]
Темы:   [ Длины и периметры (геометрические неравенства) ]
[ Теорема Птолемея ]
[ Классические неравенства (прочее) ]
Сложность: 4-
Классы: 10,11

Автор: Фольклор

Докажите, что для любых четырёх точек A, B, C, D, не лежащих в одной плоскости, выполнено неравенство  AB·CD + AC·BD > AD·BC.

Прислать комментарий     Решение

Задача 98420

 [Багаж в Московском метрополитене]
Темы:   [ Длины и периметры (геометрические неравенства) ]
[ Прямоугольные параллелепипеды ]
[ Проектирование помогает решить задачу ]
[ Боковая поверхность параллелепипеда ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 10,11

Автор: Шень А.Х.

Будем называть "размером" прямоугольного параллелепипеда сумму трёх его измерений – длины, ширины и высоты.
Может ли случиться, что в некотором прямоугольном параллелепипеде поместился больший по размеру прямоугольный параллелепипед?

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .