ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Докажите, что проективное преобразование P плоскости, переводящее бесконечно удаленную прямую в бесконечно удаленную прямую, является аффинным. б) Докажите, что если точки A, B, C, D лежат па прямой, параллельной исключительной прямой проективного преобразования P плоскости в) Докажите, что если проективное преобразование P переводит параллельные прямые l1 и l2 в параллельные прямые, то либо P аффинно, либо его исключительная прямая параллельна прямым l1 и l2. г) Пусть P — взаимно однозначное преобразование множества всех конечных и бесконечных точек плоскости, которое каждую прямую переводит в прямую. Докажите, что P проективно. ![]() ![]() Обязательно ли равны два равнобедренных треугольника, у которых равны боковые стороны и радиусы вписанных окружностей? ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]
б) Докажите, что никакая фигура не может иметь ровно двух центров симметрии. в) Пусть M — конечное множество точек на плоскости. Точку O назовем к почти центром симметриик множества M, если из M можно выбросить одну точку так, что O будет центром симметрии оставшегося множества. Сколько к почти центров симметриик может иметь M?
б) Верно ли, что любая фигура, обладающая свойством, указанным в п.а), центрально симметрична?
Точка O, лежащая внутри выпуклого четырёхугольника площади S, отражается симметрично относительно середин его сторон.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |