ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 606]      



Задача 60469

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 8,9

Докажите, что 3, 5 и 7 являются единственной тройкой простых чисел-близнецов.

Прислать комментарий     Решение

Задача 60710

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 8,9,10

Может ли число  1/3 (n² + 1)  быть целым при натуральном n?

Прислать комментарий     Решение

Задача 97841

Темы:   [ Уравнения в целых числах ]
[ Арифметика остатков (прочее) ]
[ Четность и нечетность ]
Сложность: 3-
Классы: 8,9

Автор: Фольклор

Решить в целых числах уравнение  2n + 7 = x².

Прислать комментарий     Решение

Задача 97940

Темы:   [ Десятичная система счисления ]
[ Деление с остатком ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3-
Классы: 7,8,9

Автор: Плачко В.

Докажите, что предпоследняя цифра любой степени числа 3 чётна.

Прислать комментарий     Решение

Задача 116802

Темы:   [ Четность и нечетность ]
[ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 8,9,10

Автор: Фольклор

Может ли число  (x² + x + 1)² + (y² + y + 1)²  при каких-то целых x и y оказаться точным квадратом?

Прислать комментарий     Решение

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 606]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .