Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 239]
Через точку Y на стороне AB равностороннего треугольника ABC проведена прямая, пересекающая сторону BC в точке Z, а продолжение стороны CA за точку A – в точке X. Известно, что XY = YZ и AY = BZ. Докажите, что прямые XZ и BC перпендикулярны.
|
|
Сложность: 3+ Классы: 5,6,7
|
Биссектрисы треугольника ABC пересекаются в точке I, ∠ABC = 120°. На продолжениях сторон AB и CB за точку B отмечены соответственно точки P и Q так, что AP = CQ = AC. Докажите, что угол PIQ – прямой.
[Теорема Птолемея]
|
|
Сложность: 4- Классы: 8,9
|
Докажите, что если четырёхугольник вписан в окружность, то сумма произведений длин двух пар его противоположных сторон равна произведению длин его диагоналей.
[Задача Архимеда]
|
|
Сложность: 4- Классы: 8,9
|
В дугу AB окружности вписана ломаная AMB из двух отрезков
(AM > MB).
Докажите, что основание перпендикуляра KH, опущенного из середины K дуги AB на отрезок AM, делит ломаную пополам.
Острый угол при вершине A ромба ABCD равен 40°. Через вершину
A и середину M стороны CD проведена прямая, на которую опущен
перпендикуляр BH из вершины B. Найдите угол AHD.
Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 239]