Страница:
<< 75 76 77 78
79 80 81 >> [Всего задач: 1024]
Из точки
A проведены касательные
AB и
AC
к окружности и секущая, пересекающая окружность в точках
D
и
E;
M — середина отрезка
BC. Докажите, что
BM2 =
DM . ME
и угол
DME в два раза больше угла
DBE или угла
DCE; кроме того,
BEM =
DEC.
Четырехугольник
ABCD вписан в окружность,
причем касательные в точках
B и
D пересекаются в точке
K,
лежащей на прямой
AC.
а) Докажите, что
AB . CD =
BC . AD.
б) Прямая, параллельная
KB, пересекает прямые
BA,
BD
и
BC в точках
P,
Q и
R. Докажите, что
PQ =
QR.
Окружности
S1 и
S2 пересекаются в точках
A и
B,
причем центр
O окружности
S1 лежит на
S2. Прямая,
проходящая через точку
O, пересекает отрезок
AB в точке
P,
а окружность
S2 в точке
C. Докажите, что точка
P лежит
на поляре точки
C относительно окружности
S1.
|
|
Сложность: 5 Классы: 10,11
|
Окружности $\alpha$, $\beta$, $\gamma$ касаются друг друга внешним образом и касаются изнутри окружности $\Omega$ в точках $A_1$, $B_1$, $C_1$ соответственно. Общая внутренняя касательная к $\alpha$ и $\beta$ пересекает не содержащую $C_1$ дугу $A_1B_1$ в точке $C_2$. Точки $A_2$, $B_2$ определяются аналогично. Докажите, что прямые $A_1A_2$, $B_1B_2$, $C_1C_2$ пересекаются в одной точке.
|
|
Сложность: 5 Классы: 10,11
|
Три равные окружности касаются друг друга. Из произвольной точки окружности,
касающейся внутренним образом этих окружностей, проведены касательные к ним.
Доказать, что сумма длин двух касательных равна длине третьей.
Страница:
<< 75 76 77 78
79 80 81 >> [Всего задач: 1024]