Страница:
<< 100 101 102 103
104 105 106 >> [Всего задач: 1024]
Биссектриса угла C треугольника ABC делит сторону AB на
отрезки, равные a и b (a > b). Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Даны точки A и B. С центром в точке B проводятся окружности
радиусом, не превосходящим AB, а через точку A — касательные к ним.
Найдите геометрическое место точек касания.
Одна окружность описана около равностороннего треугольника ABC, а вторая касается прямых AB и AC и первой окружности. Найдите отношение радиусов окружностей.
Прямая касается двух окружностей в точках A и B. Линия центров
пересекает первую окружность в точках E и C, а вторую – в точках D и F.
Докажите, что прямая AC либо параллельна, либо перпендикулярна BD.
Окружность, центр которой лежит вне квадрата ABCD, проходит через точки B и C.
Найдите угол между касательными к окружности, проведёнными из точки D, если отношение стороны квадрата к диаметру окружности равно 3 : 5.
Страница:
<< 100 101 102 103
104 105 106 >> [Всего задач: 1024]